Variations in number of dopamine neurons and tyrosine hydroxylase activity in hypothalamus of two mouse strains.
نویسندگان
چکیده
Mice of the BALB/cJ strain have more neurons and greater tyrosine hydroxylase (TH) activity in the midbrain than mice of the CBA/J strain (Baker, H., T. H. Joh, and D. J. Reis (1980) Proc. Natl. Acad. Sci. U.S.A. 77: 4369-4373). To determine whether the strain differences in dopamine (DA) neuron number and regional TH activity are more generalized, regional TH activity was measured and counts of neurons containing the enzyme were made in the hypothalamus of male mice of the BALB/cJ and CBA/J strains. TH activity was measured in dissections of whole hypothalamus (excluding the preoptic area), the preoptic area containing a rostral extension of the A14 group, the mediobasal hypothalamus containing the A12 group, and the mediodorsal hypothalamus containing neurons of the A13 and A14 groups. Serial sections were taken and the number of DA neurons was established by counting at 50- to 60-microns intervals all cells stained for TH through each area. In conjunction with data obtained biochemically, the average amount of TH per neuron was determined. In all areas, TH activity in CBA/J mice was significantly less (p less than 0.001) than in BALB/cJ mice, ranging from 48% in the mediobasal hypothalamus to 71% in the medial and dorsal hypothalamus. The number of TH-containing neurons was also significantly less in the CBA/J strain (p less than 0.001), ranging from 49% in the preoptic area to 74% in the mediobasal hypothalamus (MBH). With the exception of the MBH, enzyme activity per neuron was similar in both strains. In the MBH, strain differences in TH activity were greater than those for neuron number, resulting in less TH activity per neuron in the CBA/J strain. The results suggest that strain differences in the number of DA neurons are widespread and involve DA systems throughout the brain. Therefore, differences in whole brain TH activity cannot be attributed only to differences in specific regions. Our findings further support the view that the number of neurons of a specific chemical class may be under genetic control.
منابع مشابه
The midbrain dopaminergic system: anatomy and genetic variation in dopamine neuron number of inbred mouse strains.
The mesotelencephalic dopamine system is genetically variable and affects motor behavior, motivation, and learning. Here we examine the genetic variation of mesencephalic DA neuron number in a quasi-congenic RQI mouse strain and its background partner and in a recombinant inbred strain with different levels of mesencephalic tyrosine hydroxylase activity (TH/MES). We used B6.Cb4i5-alpha6/Vad, C5...
متن کاملZebrafish tyrosine hydroxylase 2 gene encodes tryptophan hydroxylase.
The primary pathological hallmark of Parkinson disease (PD) is the profound loss of dopaminergic neurons in the substantia nigra pars compacta. To facilitate the understanding of the underling mechanism of PD, several zebrafish PD models have been generated to recapitulate the characteristics of dopaminergic (DA) neuron loss. In zebrafish studies, tyrosine hydroxylase 1 (th1) has been frequentl...
متن کاملPositional Relationship between Natural Killer Cells and Distribution of Sympathetic Nerves in Decidualized Mouse Uterus
Background: Uterine natural killer (uNK) cells are the most abundant leukocytes in pre-implantation endometrium and early pregnancy deciduas in humans and rodents. They are associated with structural changes in maternal spiral arteries but regulation of their re-cruitment and activation is incompletely understood. The major subpopulation of uNK cells in humans expresses CD56, the neural cell ad...
متن کاملCinnamaldehyde attenuates dopaminergic neuronal loss in substantia nigra and induces midbrain catalase activity in a mouse model of Parkinson’s disease
Background and Objective: Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease that affects 3% of the population. PD involves a progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) and subsequent loss of dopamine. Dopamine depletion leads to movement dysfunction and is accompanied with tremor, rigid muscle...
متن کاملInfluence of Striatal Astrocyte Dysfunction on Locomotor Activity in Dopamine-Depleted Rats
Introduction: Astrocyte dysfunction is the common pathology resulting in failure of astrocyte-neuron interaction in neurological diseases, including Parkinson’s Disease (PD). To date, only few experimental models of selective ablation of astrocytes are known. The aim of present study was to evaluate the effect of striatal injections of selective glial toxin L-aminoadipic acid (L-AA) on the loco...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 3 4 شماره
صفحات -
تاریخ انتشار 1983